Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

‘Tumor-on-a-Chip’ Technology Offers New Direction

November 11, 2013 By University of Toronto

A two-year collaboration between the Chan and the Rocheleau labs at the Institute of Biomaterials & Biomedical Engineering (IBBME) has led to the development of a new microfluidics screening platform that can accurately predict the way nanoparticles will behave in a living body.

Nanoparticles are being eyed by scientists as a potentially powerful tool for personalized cancer treatments. The tiny particles, ranging in size from 10 to 100 nanometers (somewhere in size between a large protein to a small virus), can be deployed to outline tumors or to deliver chemotherapy drugs directly to cancer cells with more potency and less side effects than regular delivery methods.

But Associate Professor Jonathan Rocheleau, core faculty at the Institute of Biomaterials & Biomedical Engineering (IBBME), cross-appointed to the Departments of Physiology and Medicine, Division of Endocrinology & Metabolism and a corresponding author of the study released in Nature Communications last week, explained that the new platform fills some of the glaring holes in current nanotechnology research.

Often, the surfaces of these tiny particles are treated to make them stick to certain cells, an effect which tends to work very well when studying the particles in petri dish cultures. “What we showed was that the nanoparticles meet up with a cell mass and stick so strongly to the outside cells, they aren’t able to penetrate into the tissue. It makes you think of designing your nanoparticles in a different way,” stated Rocheleau.

Aside from petri dish cultures, live testing has been the only other method of studying the movements and interactions of nanoparticles with cell masses. But as one of the paper’s lead authors, PhD candidate Alex Albanese, explained, “If we were to inject nanoparticles into mice it would be like throwing a paper airplane blindfolded. We see where it lands but we’re not really sure of the flight pattern.”

And until now, there has been no middle ground.

‘Middle ground’ is exactly what Albanese and co-author, Dr. Alan Lam, a recent graduate of IBBME, have designed. The researchers placed live spheroid tissues, tissues that mimic the properties of cancerous tumors, into a tiny, inch-long chamber through which a saline solution was constantly flowed. The flowing liquid allowed the researchers to study the spheroids in environments similar to those found in tumors. Fluorescent nanoparticles were then injected into the chamber, allowing the team to measure just how many of the nanoparticles penetrated the tissue, where they were accumulating, and the effect of the liquid’s speed on the nanoparticle’s movements.

The experiments predicted the way the nanoparticles would behave in larger, live models, with results available within an hour rather than weeks.

“The tumor-on-a-chip allows us to sneak a peek at the paper planes before they land,” described Albanese.

Although this is just the first time microfluidics technology platform has been used to study the effects of nanoparticles on a live tumor tissue, the researchers were surprised at how simple the technology can potentially make cancer screening and treatment.

“Biopsies can be grown into these tissues and placed in the channel. Then we can find out which nanoparticles work and put them into patients,” explained Rocheleau.

The study’s authors admit there is still a vast distance between this preliminary study and future studies that can perfect the design of the nanoparticles, as well as their efficacy with different tumor tissues, organs and the entire body.

“Computers have come a long way since the 1960s. Right now, we’re still in the 1960s of personalized medicine,” argued Albanese.

For Rocheleau, though, the study points to a breakthrough in the way researchers are tackling complex biomedical challenges.

“What makes this project unique is how multidisciplinary it is,” he said. “These are very different techniques and tools coming together to address a problem, and this project wouldn’t have occurred without the expertise of two unique people and labs, and how long they stuck it out.”

Related Articles Read More >

Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age
A Medtronic HVAD pump opened up to show the inner workings
Medtronic investigates HVAD pump welds after patient deaths
Galien Foundation 2022 nominees
18 of the world’s most innovative medical technologies

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech