Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Zapping Bacteria with Sanitizers Made of Paper

May 1, 2017 By Rutgers University

(Credit: Jingjin Xie)

Imagine wearing clothes with layers of paper that protect you from dangerous bacteria.

A Rutgers-led team has invented an inexpensive, effective way to kill bacteria and sanitize surfaces with devices made of paper.

“Paper is an ancient material, but it has unique attributes for new, high-tech applications,” says Aaron Mazzeo, an assistant professor in Rutgers’ Department of Mechanical and Aerospace Engineering. “We found that by applying high voltage to stacked sheets of metallized paper, we were able to generate plasma, which is a combination of heat, ultraviolet radiation and ozone that kill microbes.”

The researchers detail their invention in a study published online today in the Proceedings of the National Academy of Sciences. A video detailing the work is also available on YouTube.

In the future, paper-based sanitizers may be suitable for clothing that sterilizes itself, devices that sanitize laboratory equipment and smart bandages to heal wounds, among other uses, the study says. The motivation for this study was to create personal protective equipment that might contain the spread of infectious diseases, such as the devastating 2014 outbreak of Ebola in West Africa.

The researchers’ invention consists of paper with thin layers of aluminum and hexagon/honeycomb patterns that serve as electrodes to produce the plasma, or ionized gas. The fibrous and porous nature of the paper allows gas to permeate it, fueling the plasma and facilitating cooling.

“To our knowledge, we’re the first to use paper as a base to generate plasma,” says Jingjin Xie, the study’s lead author and a doctoral candidate in the Department of Mechanical and Aerospace Engineering.

In experiments, the paper-based sanitizers killed more than 99 percent of Saccharomyces cerevisiae (a yeast species) and more than 99.9 percent of E. coli bacteria cells. Most E. colibacteria are harmless and are an important part of a healthy human intestinal tract. However, some types of E. coli can cause diarrhea, urinary tract infections, pneumonia and other illnesses, according to the U.S. Centers for Disease Control and Prevention.

“Preliminary results showed that our sanitizers can kill spores from bacteria, which are hard to kill using conventional sterilization methods,” says Qiang (Richard) Chen, study coauthor and a doctoral candidate in the Department of Plant Biology in Rutgers’ School of Environmental and Biological Sciences.

“Our next phase is to vigorously test how effective our sanitizer system is in killing spores,” says James F. White Jr., study coauthor and professor of plant pathology in the Department of Plant Biology.

Mazzeo says one of the goals of their ongoing research is to make sensors that resemble how human and animal skin provides protection from external microbes and bacteria, while detecting input (touch, force, temperature and moisture) from environmental surroundings. Such sensors might cover parts of prosthetics, buildings or vehicles. It also might be possible to sterilize vehicles, robots or devices before they enter contamination-prone environments and when they come out to keep them from contaminating people and clean environments.

Professor Mazzeo is a recent recipient of a 2017 NSF CAREER Award, which will allow his research group to continue work with papertronic sensors. The scientists will explore the design and fabrication of paper-based sensors for wearable devices capable of measuring brain waves and sweat to determine human alertness and stress. Their future work should lead to electronic devices that bridge the gap between machines and humans, while creating new processing techniques for renewable paper products.

Related Articles Read More >

Biological Toolkit of Cells Assembled Like Legos
New Technology Keeps Eye On Babies’ Movement In The Womb
Robots Won’t Replace Teachers But Can Boost Children’s Education
Artificial Placenta Created In Laboratory

DeviceTalks Weekly.

July 1, 2022
Boston Scientific CEO Mike Mahoney on building a corporate culture that drives high growth results
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech