Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

3D Printed Baby Dummy for Better Resuscitation Training

May 9, 2019 By Valentina Bonito, Eindhoven University of Technology

TU/e researcher Mark Thielen (Industrial Design) has developed a 3D printed baby dummy, based on an MRI scan of a real newborn baby, which could improve the training of the reanimation procedure.

Two millions: This is, worldwide, the number of babies which suffer suffocation during birth every year. A resuscitation procedure is sometimes the key to avert irreparable damages for the baby. And, for successful outcomes, promptness of action and preparation are vital. TU/e researcher Mark Thielen (Industrial Design) developed a 3D printed baby dummy, based on an MRI scan of a real newborn baby. The manikin is made of 3D printed organs and chest bones, and a mock circulatory system. For the neonatologists of the Maxima MC of Veldhoven, the manikin offers a much more realistic feeling during the training of the resuscitation procedure than previously used ones, and, as an added value, the real-time monitoring of vital signals such as blood pressure and heart rate during resuscitation.

Each year, worldwide, approximately one million babies die during birth due to due to a shortage of oxygen that occurs during birth. Additionally, one million babies suffer consequences which vary, depending on the duration of oxygen deprivation, from minor neurological abnormalities to, unfortunately, irreparable brain damage. Direct resuscitation—opening the airway, ventilating the lungs and performing chest compressions—can minimize the consequences of suffocation through birth.

Squeaky springs

Neonatologists, gynecologists and midwives are currently training these skills on resuscitation manikins. Although the manikins should be replacements for the real child, there is little resemblance on the inside. “They have a purely mechanical design, which is optimized for massive production: cheap and indestructible,” explains Thielen. And, a mechanical internal construction, with squeaking springs and plastic plates, is surely not how humans are biologically composed. “When doctors practice using these manikins,” he wonders, ‘do they actually learn the right feeling? And, without measuring blood and air flow, can we determine the quality of the training?”

Segmentation of the MRI image of the rib cage (red) and cartilage structure (yellow). Credit: Eindhoven University of Technology

Newborn from the printer

For his Ph.D. project, Thielen designed and built a new resuscitation manikin, based on an MRI scan of a full-term infant. Using a 3D printer he made replicas of the bone structure—consisting of strong, flexible plastics—and molds of the heart, lungs, muscle, fat and skin tissue, in various soft silicone types. The entire manikin was printed down to the last detail.

“Three-dimensionally printing the rib cage was a real challenge, an enormous effort that required months of work,” says Thielen. “I spent hours and hours identifying the borders of every single bone in the MRI images, slice by slice. Often, having the images analyzed automatically by an image software gave unsatisfactory results, so I had to restart from scratch and do everything manually.” A lot of attention was also paid to the 3D printing of the heart, a model consisting of four internal spaces with even four heart valves.

Quality of cardiac massage

The new design incorporates a variety of sensors to measure the quality of resuscitation. For example, the jaw contains position sensors to monitor the opening of the airway, while blood pressure and flow sensors have been placed in the heart to measure the effectiveness and quality of the cardiac massage. The final integration of the artificial vascular system into the manikin still requires further miniaturization of the circulation system.

Circulatory system. Credit: Eindhoven University of Technology

Emergency services enthusiastic

The resistance and flexibility of the heart and rib cage are measured in the new manikin and compared to real babies and rabbits, which are comparable in anatomy and size. For Sidarto Bambang Oetomo, pediatrician in neonatology specialized in innovations for premature babies who has for long worked at the Maxima MC of Veldhoven and as a part-time professor at TU/e, the new manikin is a big step towards realistic behavior, which can ‘improve the quality of the resuscitation training.” “When manikins look like dolls,” he explains, ‘the trainees can be easily distracted and lose their concentration, rendering the training less efficient.” Doctors and nurses from Maxima MC who participated in a sensory study also indicated that the realistic sensory value during the resuscitation of the new manikin was much higher than with current manikins.

For the smallest, deserving the biggest chance

The manikin developed by Thielen is especially meant for hospitals of developing countries, where most of the premature births occur. “As such,” he explains, “affordability is one of the biggest prerequisites.” The first prototype of Thielen, now developed at a cost of approximately 5000 euros, is slightly more expensive than its simpler and purely mechanic alternatives. Yet, it still represents a cheap alternative to very sophisticated manikins, which could costs up to 50000 euros. And Thielen is already thinking of short term solutions to cut down the costs even further. Thielen: “Nowadays, the shipping of products worldwide is common practice. I am dreaming of my 3D printed baby being borrowed all over the world, wherever needed, and at a much cheaper, rental price.”

Related Articles Read More >

This is a screenshot of the remote robotic surgery technical guidelines appearing in the World Journal of Surgery.
New technical guidelines set to advance remote robotic surgery
An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
A photo of Johnson & Johnson MedTech's Polyphonic-connected Monarch robotics-assisted bronchoscopy system in the lab.
J&J MedTech’s global head of digital wants to fund your AI project
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe