Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Breakthrough Technology Can Repair Severe Tissue Damage

April 10, 2014 By AxoGen, Inc.

A breakthrough could speed recovery and limit disfigurement for patients who have suffered large soft tissue trauma – as occurs with serious injury or cancer surgery.  By biomedically engineering a muscle flap that includes a patient’s own blood vessels, the team created tissue that could be transferred to other parts of the body along with the patient’s blood supply. Current techniques – including grafts and synthetic material – for reconstructing such trauma often fail because of lost blood supply.

Led by Professor Shulamit Levenberg, of the Department of Biomedical at the Technion-Israel Institute of Technology, the scientists fabricated the flap using a variety of added cells and connective tissues to strengthen it.  They tested it by reconstructing deep abdominal wall tissue defects in mice.

Research results appear this week in the Online Early Edition of the Proceedings of the National Academy of Sciences (www.pnas.org).

Successful reconstruction of large, soft tissue defects has been a clinical challenge in the past.  To improve outcomes, the researchers developed the muscle flap using a patient’s own tissues, added important and advantageous cellular components to strengthen it, and engineered it in such a way as to vascularize to include the patient’s own blood vessels so that the patient retained their own blood supply during the reconstruction process.

“We designed and evaluated an engineered muscle flap with robust vascularization,” says Levenberg, whose research focuses on vascularization of engineered tissues. “Proper vascularization is essential for successfully integrating the flap within the host.”

The study provides evidence that tissue-specific cells, such as myoblasts (cells that form muscles), endothelial cells (the thin layer of cells that lines the interior surface of blood vessels), and fibroblasts (the cells providing the structural framework for animal tissues), are necessary to more effectively integrate within the host tissue.

Within one week of being transferred into the test mice, the engineered muscle flaps were “viable, highly vascularized,” and demonstrated “firm attachment to the surrounding tissues.”  The researchers also noted that the muscle flaps had the mechanical strength to support the “abdominal viscera,” or organs in the abdominal region.

The researchers say the results will stimulate more research and lead to clinical studies with human patients.  They also suggest there are far-reaching uses of the muscle flap as it can be transferred as a ‘free flap’ to reconstruct defects in other parts of the body.  This could circumvent the need to harvest and transfer large amounts of tissue, avoiding many of the current complications.

The study was performed in collaboration with Dr. Yulia Shandalov (who was a doctoral student under Levenberg), and Dr. Dana Egozi, from the Rambam Health Care Campus.  It is part of a research project funded by the European Research Council (ERC).

Related Articles Read More >

An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
A photo showing the Dualto Energy System's modular design with two generators stacked for two users at a time.
What J&J MedTech’s new Dualto says about the OR of the future — and Ottava
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
Q&A with Darshin Patel, who led the Edwards Lifesciences Sapien M3 TMVR system’s development
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe