Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Engineers Develop A New Noninvasive Method To Detect Infections In Prostheses

December 15, 2016 By University of California - San Diego

Engineers at the University of California San Diego have developed a new non-invasive method to detect infections in prostheses used for amputees, as well as for knee, hip, and other joint replacements. The method, which is at the proof of concept stage, consists of a simple imaging technique and an innovative material to coat the prostheses.

“Current methods to detect infection require patients to undergo burdensome imaging procedures, such as an MRI, CAT scan, or X-rays,” says Ken Loh, a professor of structural engineering at the Jacobs School of Engineering at UC San Diego and the lead researcher on the project. “By contrast, our method could be easily used in a doctor’s office or in the home and, potentially, provide quantitative diagnostic-relevant information about the extent and locations of the infection.”

(a) A plastic rod was used as a prosthesis surrogate. (b) The rod was coated with a pH-sensitive thin film sensor and (c) tested experimentally using a prototype ECT mapping system. (Image credit: UC San Diego)

The imaging technique the researchers relied on is an improved version of electrical capacitance tomography (ECT), which measures the human tissue and prosthesis’ electrical properties using safe electrical fields. An algorithm processes the measurement data to allow physicians to reconstruct a predetermined area’s electrical properties to reveal the health of the tissue, bone and prosthesis. Infection causes changes in the field, which can be detected via ECT. Loh and PhD student Sumit Gupta improved the algorithm to make it more accurate.

In addition, Loh and Gupta developed a thin-film sensor that could be sprayed onto a prosthesis to improve the imaging technique’s ability to detect infection or other issues occurring in the tissue or prosthesis.

The film is made of a conductive polymer matrix that is sensitive to pH, as well as carbon nanotubes embedded in the matrix that increase the material’s ability to conduct electricity more sensitively regardless of the pH level. Infections caused by different microorganisms often change the local pH in human cells and affect their ability to conduct electricity.

“This is a new modality of sensing that hasn’t been widely used to detect infection before,” Loh says.

During simulations, a prosthesis was assumed to be embedded in human tissue (a). Figures b to c show how infection changes the electrical properties in a semicular region at the tissue-prosthesis interface. (e) to (h): electrical maps from ECT simulations showed that the technique was able to capture changes due to degradation (or infection). (Image credit: UC San Diego)

To test their system, the researchers spray-coated a plastic rod — as a surrogate of an actual prosthesis — with the thin-film sensor and then exposed it to several solutions that changed its pH. After each exposure to a solution, the researchers used their prototype system to scan the rod to obtain electrical measurements for their ECT algorithm. The method successfully detected the location of the rod and a change in the rod’s electrical properties due to changes in pH.

“The combination of these two techniques makes our method optimal and, potentially, highly sensitive to different complications related to these prostheses and implants,” Loh says.

He envisions multilayered thin-film sensors coated onto prostheses where each layer can detect different signals, such as for monitoring stresses and strains of the actual prosthesis, loosening, infection and pH changes.

Next steps would include refining the measurement setup and to conduct animal testing, which is about three years out, Loh says.

Related Articles Read More >

Logos of Creo Medical and Intuitive
Creo Medical inks collaboration agreement with Intuitive
Lazurite ArthroFree wireless surgical camera system Minnetronix Medical
How Minnetronix Medical helped Lazurite with its wireless surgical camera
Medtronic Hugo robot-assisted surgery system
The road to a robot: Medtronic’s development process for its Hugo RAS system
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age

DeviceTalks Weekly.

May 27, 2022
Quick message - No DTW podcast, but plenty else to listen to over this weekend and next week.
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech