Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

‘Franken-Platelet’ Helps Heal Major Wounds

November 9, 2015 By University of British Columbia

Platelets (blue dots) surrounded by red blood cells.Faculty of Medicine scientists have created a “Franken-platelet” – a supercharged blood cell – that might be capable of healing major wounds, busting clots or blocking inflammation. Named for their disk-like shape, platelets stop bleeding by adhering to a rupture in blood vessels, plugging the hole, and secreting proteins that trigger the formation of blood clots. Despite their importance, platelets are relatively simple – unlike most cells, they lack a nucleus, and thus don’t have DNA.

Assistant Professor Christian Kastrup, in the Department of Biochemistry and Molecular Biology and the Michael Smith Laboratories, and graduate students Vivienne Chan and Stefanie Novakowski injected platelets with DNA and other ingredients needed to make RNA – the crucial molecules that transform DNA’s code into the multitude of proteins that carry out a cell’s many activities.

The resulting RNA, the first-ever produced inside a platelet, didn’t endow the cells with any new powers. But the RNA, when extracted from the platelets and immersed in a soup of cellular biochemicals, performed as predicted, producing proteins that glowed when exposed to certain types of light.

The experiments, described in an article this week in the German chemistry journal Angewandte Chemie International Edition, point the way to fortifying platelets with more useful genes. One possibility is making platelets even better at blood clotting. These supercharged platelets would be programmed to release more coagulation enzymes, enabling them to seal ruptures that would prove too large for normal platelets.

But the researchers’ breakthrough also raises the possibility of endowing platelets with powers they don’t currently have. For example, they could release RNA or proteins that decrease inflammation – the natural response by injured or infected tissues that, when unchecked, leads to such diseases as artherosclerosis or arthritis.

Platelets might even be programmed to “go against type,” releasing proteins that degrade clots near the heart or brain, where they can cause heart attacks or stroke.

“This technology could be used to make platelets that go beyond their present capabilities,” says Dr. Kastrup, a member of the UBC Centre for Blood Research. “Platelets are a basic component of blood, so they make an excellent way to deliver therapies to people with uncontrollable internal bleeding, or inflammatory diseases, or dangerous clots. We’ve gotten platelets to make their own RNA; our next step is getting them to make therapeutic RNA, or therapeutic proteins.”

Related Articles Read More >

This is a screenshot of the remote robotic surgery technical guidelines appearing in the World Journal of Surgery.
New technical guidelines set to advance remote robotic surgery
An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of Johnson & Johnson MedTech's Polyphonic-connected Monarch robotics-assisted bronchoscopy system in the lab.
J&J MedTech’s global head of digital wants to fund your AI project
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe