Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Johns Hopkins Experts Devise A Way To Cut Radiation Exposure In Children Needing Repeat Brain Scans

October 4, 2013 By AxoGen, Inc.

A team of pediatric neurosurgeons and neuroradiologists at the Johns Hopkins Children’s Center has developed a way to minimize dangerous radiation exposure in children with a condition that requires repeat CT scans of the brain. The experts say they reduced exposure without sacrificing the diagnostic accuracy of the images or compromising treatment decisions.

The approach, described ahead of print in a report in the Journal of Neurosurgery, calls for using fewer X-ray snapshots or “slices” of the brain taken by CT scanners – seven instead of the standard 32 to 40 slices. The approach, the study found, reduced radiation exposure by an average of nearly 92 percent per patient compared with standard head CT scans, while still rendering the images diagnostically accurate.

“The traditional thinking has been that fewer slices would, by definition, mean less clarity and less accuracy, rendering a CT scan suboptimal, but our findings show otherwise,” says lead investigator Jonathan Pindrik, M.D., chief neurosurgery resident at Johns Hopkins.

The research involved analysis of CT scans of patients with excessive fluid in the brain, a condition known as hydrocephalus that requires periodic fluid-draining surgeries and a head CT before each procedure. The investigators compared two standard CT scans with two limited-slice, low-dose CT scans for each one of 50 children, ages 17 and younger, treated for hydrocephalus over five years at Johns Hopkins Children’s Center. The standard CT scan images were performed prior to the launch of the new radiation-minimizing protocol.

In all 50 patients, the radiation-minimizing technique produced clear and 100-percent accurate images of the brain ventricles – the draining system that carries cerebrospinal fluid in and out of the brain. When capturing changes in ventricle size, however, the low-dose approach resulted in a 4 percent error rate: Two of the 50 images were visually ambiguous, generating confusion among the clinicians who reviewed them. There were no false negatives in the low-dose images, but three false positives, the study showed. In other words, there were no instances of clinicians falsely perceiving normal ventricular size, but three instances of clinicians perceiving a change in ventricular size when there was none. On balance, the radiation-minimizing approach was clearly adequate, the researchers say, and would have not compromised treatment outcomes.

The Hopkins team says the radiation-minimizing technique could be especially valuable in pediatric emergency rooms, where the need for quick diagnosis precludes the use of more cumbersome, radiation-free imaging alternatives like MRI. It also can be used for routine evaluation in smaller community hospitals that may lack MRI equipment, the researchers say.

CT scans are invaluable imaging tools that have revolutionized the diagnosis and treatment of many conditions by providing fast, reliable and accurate images, but they have driven up levels of radiation exposure in both children and adults, the investigators say. Ionizing radiation, used in X-rays and CT scans, has been long implicated in the development of certain cancers because of its ability to damage DNA. Children are especially vulnerable to the effects of radiation because of their smaller size, growing tissues and rapidly dividing cells, and because of their longer lifespans that allow slow-growing cancers to emerge decades after exposure, the researchers note.

“We have been searching for ways to minimize radiation exposure in kids without sacrificing the diagnostic accuracy of the images – and that is no easy feat – but we believe our limited-slice CT scans achieved that balance,” says senior study investigator Edward Ahn, M.D., a pediatric neurosurgeon at the Johns Hopkins Children’s Center.

Hydrocephalus is often treated by placing a catheter that drains excess fluid from the brain into the abdomen, a procedure known as ventriculo-peritoneal shunting. Children with brain shunts require periodic imaging to assess catheter position and function. Shunt failure that occurs when a catheter dislodges or infection sets in is a common and dangerous complication and considered an emergency. However because shunt failure often causes non-specific symptoms such as headache, vomiting and fever, a definitive diagnosis requires a brain scan.

There are more than 62 million CT scans performed each year in the United States, four million of them in children. Experts estimate that radiation from medical imaging is the single largest source of radiation exposure in the population, and that up to 2 percent of all cancers stem from exposure to medical radiation.

Related Articles Read More >

This is a screenshot of the remote robotic surgery technical guidelines appearing in the World Journal of Surgery.
New technical guidelines set to advance remote robotic surgery
An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
A photo of Johnson & Johnson MedTech's Polyphonic-connected Monarch robotics-assisted bronchoscopy system in the lab.
J&J MedTech’s global head of digital wants to fund your AI project
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe