Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Space-Age Challenge: Healing Broken Bones, Wounds and Internal Organs

January 24, 2017 By Rutgers University

Ronke Olabisi once dreamed of becoming an astronaut.

Now she’s conducting research that could help space travelers and Earth-dwellers heal faster and stay healthy.

“If healing people faster on Earth is going to be helpful, then it’s really going to be helpful in space,” says Olabisi, an assistant professor in Rutgers’ Department of Biomedical Engineering. “Spaceflight affects every single system.”

Ronke Olabisi, assistant professor in the Department of Biomedical Engineering, and her lab focus on tissue engineering and regenerative medicine to replace or repair bone, skin, muscle and the retina. (Credit: Rutgers University)

Bones, muscle and other tissues gradually break down in space, posing major problems for anyone wanting to go to Mars and beyond, said Olabisi, who works in the School of Engineering. Fractures, wounds and soft tissue injuries don’t heal quickly in low-gravity conditions, and the biomedical engineer is studying how to speed the process.

Olabisi and her lab focus on tissue engineering and regenerative medicine to replace or repair bone, skin, muscle and the retina. She and her colleagues want to develop biosynthetic materials, or biomaterials, that drive or direct how cells function. One goal of the field is to replace organs – such as the liver and lung – in people who need new ones.

Olabisi’s research is informed by deep knowledge in several fields. She earned a bachelor’s degree in mechanical engineering at Massachusetts Institute of Technology and has three advanced degrees. They include a master’s degree in mechanical engineering from the University of Michigan, a master’s in aeronautical engineering from Michigan and a doctorate in biomedical engineering from the University of Wisconsin-Madison.

When she was a child, Olabisi loved science.

“Other kids wanted to do magic,” says Olabisi, whose father is a chemical engineer and mother is a physician. “I wanted to do science. I liked chemistry. I liked physics. I liked biology. I liked it all.”

She fell in love with biomedical engineering by accident. At the University of Michigan, a professor asked students to design an aerospace material for a non-aerospace application. She developed a hip implant and began learning more about bone, the only body material that heals without a scar.

As people age, the healing process is impeded and people who break their hips are more likely to die in the hospital than those who don’t, said Olabisi, who joined Rutgers in 2012. Tissue engineering could repair hip fractures, saving lives.

Six years ago, she began working with the 100 Year Starship project, a nonprofit striving to facilitate interstellar flight beyond our solar system within 100 years. She’s a member of its science board.

“It’s a thought exercise,” she says. “In 1869, we never thought that in 100 years we’d make it to the moon and in the decade that they put forth the effort to go to the moon, all of the things that were required to get them there completely transformed our technology.”

“We have GPS because they needed to develop a way to communicate with the astronauts in space,” she says. “We have cell phones. We have water filtration. It profoundly transformed life on Earth for the better, and if we try to get to another star in the next 100 years, imagine the technologies that would be developed that would improve life on Earth? It’s really secondary if we actually make it to another star.”

Deep space missions will boost crew exposure to long-term microgravity, or weightlessness, and reduced gravity, according to the 100 Year Starship Project. Such low-gravity environments slow wound and fracture healing and accelerate bone loss, muscle loss and certain aspects of aging. Tissue-engineered skin grafts are available now on Earth, but non-healing wounds remain troublesome for burn victims, diabetics and the elderly.

Olabisi’s goal is to develop injectable microscopic biomaterials, topical lotions, and large biomaterials that can speed healing of skin wounds, bone fractures and degenerating retinas. Her cell therapy research is based on a novel system that traps proteins, insulin-producing cells, and mesenchymal or adult stem cells (MSCs) in tiny spheres made of synthetic hydrogels. These spheres, called microspheres, might be applied to external wounds or injected to treat fractures and soft tissue injuries. Microspheres can be frozen for storage and freeze-dried, according to Olabisi.

In recent lab experiments, she and her team observed diabetic wound healing in 14 days without intermediate scar or scab formation. Normally, such wounds would take 35 days to heal, Olabisi says.

She and her lab are also studying the Bruch’s membrane – a barrier in the retina that prevents immune cells from entering the eye and causing irreparable damage. The Bruch’s membrane is the first thing that gets damaged during age-related macular degeneration, the leading cause of blindness in developed countries, she said.

Olabisi’s team is trying to develop a scaffold that mimics some of the membrane’s key features. Her lab is also conducting research on nacre, commonly known as Mother of Pearl, which has an affinity for bone and causes bone cells to grow.

“We’re trying to take a step back and identify the ingredients and build biomaterials from there,” she says.

Related Articles Read More >

Avail Medsystems
How Avail Medsystems seeks to create a connected OR experience
Engineer inspecting artificial hip joint parts in quality control department in orthopaedic factory
Deburring and finishing for beautiful, functional medical devices
FDA logo
FDA seeking innovations to move beyond heater-cooler device problems
Logos of Creo Medical and Intuitive
Creo Medical inks collaboration agreement with Intuitive

DeviceTalks Weekly.

June 24, 2022
How innovative design, commercial strategy is building Cala Trio’s bioelectronic medicine market
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech